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Reductive elimination (RE) is a fundamental organometallic
reaction in stoichiometric and catalytic processes, leading to the
formation of new bonds.1 Recently we reported the RE of CH3I
from a RhIII complex.2 The other few examples of directly observed
RE of alkyl halides involve thermolysis of PtIV complexes,3

including competition with C-C RE.3b,c Aryl halide RE was
reported for PtIV and PdII complexes.4 RE of acyl iodide is a
product-forming step in the Monsanto acetic acid process.5

The RE of nitriles is a fundamental step in important catalytic
processes, such as the hydrocyanation of butadiene in the DuPont
adiponitrile process,6 catalytic cyanation of aryl halides,7 and carbo-
cyanation of unsaturated carbon-carbon bonds.8 Directly observed
RE of alkyl nitriles was reported for ethyl and propyl cyanide from
NiII 9 and for RCH2CN (R ) TMS, C(CH3)3) from PdII.10 The latter
was reported as a migratory RE, which is accelerated by Lewis
acids.11 The isomerization of 2-methyl-3-butenenitrile to 3-pen-
tenenitrile by NiII also involves a RE step.12

Here we report the competitive RE from a [RhIII(CH3)(CN)][I]
complex to give exclusively CH3CN in protic solvents and CH3I
in aprotic solvents. A rare case of selective electrophilic attack on
a cyanide ligand coordinated to an unsaturated, low valent complex
is also reported.

The cationic [(PNP)Rh(acetone)][BF4] (1)13 (PNP ) 2,6-bis-
(di-tert-butylphosphinomethyl)pyridine) reacts with excess KCN in
methanol to give the fully characterized14 [(PNP)Rh(CN)] (2).
Unexpectedly, when the electron rich RhI complex 2 was reacted
with a large excess of CH3I or ethyl iodide (EtI) at ambient
temperature in acetone or CH2Cl2, only the RhI isonitrile complexes
3 and 4, respectively, were obtained, after 4 and 12 h respectively,
with no oxidative addition (OA) being observed (Scheme 1).14 To
our knowledge, all reported cases of electrophilic attack on the
terminal nitrogen of cyanide complexes occurred only with coor-
dinatively saturated complexes or with complexes in which the
metal center is in high oxidation state, making OA of the
electrophile unlikely.15,16

Follow-up of the reaction of 2 with excess EtI by NMR did not
reveal any intermediates, while in the case of excess CH3I an OA
product [(PNP)Rh(CN)(CH3)][I] (5) was formed immediately in
more then 65% yield. Complex 5 is stable only at low temperature
(273 K) and converts into complex 3 after 4 h at room temperature
(Scheme 1). 5 exhibits a doublet at 60.17 ppm (1JRhP ) 97.2 Hz)
in the 31P{1H} NMR spectrum. The low 1JRhP (as compared to the
RhI complexes 1-4) indicates that 5 is a RhIII complex. Using
13CH3I, the complex exhibits a dt signal of Rh-13CH3 in the
13C{1H} NMR spectrum at 11.67 ppm (1JRhC ) 26.5 Hz, 2JPC )
3.8 Hz) and in the 1H{31P} NMR the methyl ligand appears as a

dd at 1.65 ppm (2JRhH ) 2.7 Hz, 1JCH ) 144.7 Hz). The cyano
ligand appears as a ddt signal at 130.26 ppm (2JCC ) 2.2 Hz)
confirming a cis orientation for the cyano and methyl ligands. A
larger 2JCC of 29.5 Hz was found for the trans isomer, as described
below. Crystals of 5 were obtained from a cold (253 K) solution
of 2 in methanol/ether with a large excess of CH3I. The low
temperature X-ray structure of 5 confirms a cationic complex with
the methyl group at the apical position.14,17

Complexes 2 and 5 are in equilibrium, as observed by a variable
temperature 31P{1H} NMR experiment. Equilibrium constants (Keq

) [5]eq/[2]eq[MeI]eq) were obtained for temperatures between 273
and 253 K, before complex 3 formed, yielding ∆H) -14.5 ( 0.5
kcal/mol, ∆S ) -51.7 ( 1.9 eu and ∆G258 ≈ -1.4 kcal/mol.14

The reaction pathway for the conversion of 5 to 3 very likely
involves RE of CH3I from 5, followed by its electrophilic attack
on the cyano ligand of 2. Intramolecular migration of the alkyl
group to the cyano ligand is unlikely; DFT calculations give ∆Gq

) 36.2 kcal/mol for this process, and ∆Gq ) 25.8 kcal/mol for the
external attack pathway.14,18 In addition, an OA intermediate was
not observed in the reaction of 2 with EtI. The possibility of
electrophilic attack of excess CH3I on the cyano ligand of 5
occurring prior to RE of CH3I is unlikely, based on the observed
facile RE of CH3I from 5, as evidenced by its equilibrium with 2.

Reaction of [Et4N]CN with [(PNP)Rh(CH3)I][BF4] (6) (easily
obtained by reaction of 1 with CH3I14) at -30 °C in CH2Cl2

afforded complex 7, identified as an isomer of 5, with the methyl
group trans to the cyano ligand (Scheme 2). The 31P{1H} NMR of
7 exhibits a sharp dd at 62.37 ppm (1JRhP ) 92.0, 2JPC ) 6.9 Hz),
and the methyl ligand appears as a dt signal at -7.65 ppm (1JRhC

) 15.4, 2JPC ) 6.9 Hz) in the 13C{1H} NMR spectrum.19 Using
the 13CH3 labeled 7, the cyano ligand exhibits a ddt signal at 147.35
ppm with a 2JCC of 29.5 Hz, much larger than in the case of 5, in
line with CN trans to methyl, and is stable for more than 3 days at
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Scheme 1. Reaction Pathway of Complex 5 in Protic and Aprotic
Solvents and an ORTEP Drawing of 2(H2O) at 50% Probability
Level. Hydrogen Atoms (Except of Water) Were Omitted for Clarity
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-30 °C in solution, but at room temperature it reductively
eliminates CH3I (detected by 13C{1H} NMR and GC-MS) after
3 h, forming 2, and finally 3. Same results are obtained in the
presence of excess CH3I (Scheme 2).20

Surprisingly, when 2 was dissolved in protic solvents such as
methanol, ethanol, isopropyl alcohol, or a water-acetone mixture,
no reaction with EtI was observed. Moreover, the reaction of 2
with CH3I in protic solvents yielded free CH3CN and the crystal-
lographically characterized [(PNP)Rh(CH3)I][I] (8)14 (Scheme 1).
NMR follow-up of this reaction in methanol revealed that complex
2 undergoes OA of CH3I to give complex 5, as in methylene
chloride or acetone. However, in protic solvents RE of CH3CN
takes place as evidenced by 13C{1H} NMR and GC-MS.14 The
RE of CH3CN from 5 probably leads to formation of [(PNP)RhI]
(9),21 which reacts with CH3I to give complex 8. Complex 9 was
prepared independently14 by addition of NaI to complex 1.13

Addition of CH3I to 9 resulted in immediate formation of 8.
Complex 8 is not stable and readily eliminates CH3I upon
evaporation to give 9. The 31P{1H} NMR spectrum of 8 reveals a
sharp dd at 52.08 ppm with 2JCP ) 3.6 and 1JRhP ) 100.0 Hz, the
latter being typical of a RhIII complex. The methyl ligand gives
rise to a ddt signal at 2.31 ppm (1JCH ) 144.0, 2JRhH ) 2.8, 3JPH )
4.4 Hz) in the 1H NMR spectrum and a dt signal at 8.85 (1JRhC )
24.7, 2JPC ) 3.6 Hz) in the 13C{1H} NMR.

Upon addition of excess CH3I to 7 in methanol (rather than in
CH2Cl2), 7 isomerizes to 5, which reductively eliminates CH3CN.
The fact that RE of CH3CN was observed only after formation of
the cationic, cis cyano methyl complex 5 is in line with a concerted
C-C RE from an unsaturated complex, as reported for a
PtIVcomplex.3b,c

We believe that the selectivity of the reaction of 2 with CH3I
toward formation of (coordinated) methyl isonitrile in aprotic
solvents or CH3CN in protic solvents is a result of a hydrogen bond
between the CN ligand and the protic solvent,22 which hinders
electrophilic attack by CH3I on the terminal CN nitrogen.

Strong evidence for a hydrogen bond between the cyano ligand
and the protic solvent was provided by crystal structures of 2 which
were obtained from a mixture of acetone-water or from methanol.14

The structures reveal a water molecule with a N(1)-O(1) distance
of 2.838(3) Å (2(H2O)) (Scheme 1) or a methanol molecule with
a N(1)-O(1) distance of 2.731(5) Å, (2(CH3OH)) which are in the
range of hydrogen bonds.23

The large difference in the chemical shift of the cyano carbon
observed in methanol versus methylene chloride (∆δ ) 11.95
ppm)14 is in line with the existence of a hydrogen bond in solution.

In conclusion, selective and quantitative RE of CH3I or CH3CN
was observed at ambient temperature from the complex
[(PNP)Rh(CN)(CH3)][I] (5) upon reaction in aprotic or protic
solvents, respectively. The reductively eliminated CH3I undergoes
selective electrophilic attack on the cyano ligand of the RhI complex
in an aprotic solvent to give the corresponding alkyl isonitrile
complex. In a protic solvent a hydrogen bond between the cyano
ligand and the solvent protects the cyano ligand from an electro-
philic attack, resulting in selective CH3CN RE. Further mechanistic,
computational, and experimental work is in progress.
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